Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626295

RESUMO

The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya and Zika, which affect millions of people world-wide. Population genetics studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse Ae. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shot-gun sequencing approach using mosquitoes from the native (Africa) and invasive range (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic and phylogenetic analyses using the SNP chip were congruent with those derived from low coverage whole genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole genome sequencing for population genetic studies of Ae. aegypti that do not rely on full allelic frequency spectra. Whole genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches.

2.
Nat Commun ; 14(1): 6252, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803007

RESUMO

Mosquitoes have profoundly affected human history and continue to threaten human health through the transmission of a diverse array of pathogens. The phylogeny of mosquitoes has remained poorly characterized due to difficulty in taxonomic sampling and limited availability of genomic data beyond the most important vector species. Here, we used phylogenomic analysis of 709 single copy ortholog groups from 256 mosquito species to produce a strongly supported phylogeny that resolves the position of the major disease vector species and the major mosquito lineages. Our analyses support an origin of mosquitoes in the early Triassic (217 MYA [highest posterior density region: 188-250 MYA]), considerably older than previous estimates. Moreover, we utilize an extensive database of host associations for mosquitoes to show that mosquitoes have shifted to feeding upon the blood of mammals numerous times, and that mosquito diversification and host-use patterns within major lineages appear to coincide in earth history both with major continental drift events and with the diversification of vertebrate classes.


Assuntos
Culicidae , Animais , Humanos , Culicidae/genética , Filogenia , Mosquitos Vetores/genética , Mamíferos , Vertebrados , Comportamento Alimentar
3.
Elife ; 122023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897062

RESUMO

The globally invasive mosquito subspecies Aedes aegypti aegypti is an effective vector of human arboviruses, in part because it specializes in biting humans and breeding in human habitats. Recent work suggests that specialization first arose as an adaptation to long, hot dry seasons in the West African Sahel, where Ae. aegypti relies on human-stored water for breeding. Here, we use whole-genome cross-coalescent analysis to date the emergence of human-specialist populationsand thus further probe the climate hypothesis. Importantly, we take advantage of the known migration of specialists out of Africa during the Atlantic Slave Trade to calibrate the coalescent clock and thus obtain a more precise estimate of the older evolutionary event than would otherwise be possible. We find that human-specialist mosquitoes diverged rapidly from ecological generalists approximately 5000 years ago, at the end of the African Humid Period-a time when the Sahara dried and water stored by humans became a uniquely stable, aquatic niche in the Sahel. We also use population genomic analyses to date a previously observed influx of human-specialist alleles into major West African cities. The characteristic length of tracts of human-specialist ancestry present on a generalist genetic background in Kumasi and Ouagadougou suggests the change in behavior occurred during rapid urbanization over the last 20-40 years. Taken together, we show that the timing and ecological context of two previously observed shifts towards human biting in Ae. aegypti differ; climate was likely the original driver, but urbanization has become increasingly important in recent decades.


Assuntos
Aedes , Animais , Humanos , Aedes/genética , Mosquitos Vetores , Ecossistema , Urbanização , Cidades
4.
Infect Genet Evol ; 103: 105333, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817397

RESUMO

Aedes aegypti (L.), the yellow fever mosquito, is also an important vector of dengue and Zika viruses, and an invasive species in North America. Aedes aegypti inhabits tropical and sub-tropical areas of the world and in North America is primarily distributed throughout the southern US states and Mexico. The northern range of Ae. aegypti is limited by cold winter months and establishment in these areas has been mostly unsuccessful. However, frequent introductions of Ae. aegypti to temperate, non-endemic areas during the warmer months can lead to seasonal activity and disease outbreaks. Two Ae. aegypti incursions were reported in the late summer of 2019 into York, Nebraska and Moab, Utah. These states had no history of established populations of this mosquito and no evidence of previous seasonal activity. We genotyped a subset of individuals from each location at 12 microsatellite loci and ~ 14,000 single nucleotide polymorphic markers to determine their genetic affinities to other populations worldwide and investigate their potential source of introduction. Our results support a single origin for each of the introductions from different sources. Aedes aegypti from Utah likely derived from Tucson, Arizona, or a nearby location. Nebraska specimen results were not as conclusive, but point to an origin from southcentral or southeastern US. In addition to an effective, efficient, and sustainable control of invasive mosquitoes, such as Ae. aegypti, identifying the potential routes of introduction will be key to prevent future incursions and assess their potential health threat based on the ability of the source population to transmit a particular virus and its insecticide resistance profile, which may complicate vector control.


Assuntos
Aedes , Mosquitos Vetores , Aedes/genética , Animais , Humanos , Mosquitos Vetores/genética , Nebraska/epidemiologia , Utah/epidemiologia , Febre Amarela , Zika virus , Infecção por Zika virus
5.
Genetics ; 221(3)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35652239

RESUMO

For more than 50 years it has been a dream of medical entomologists and public health workers to control diseases like malaria and dengue fever by modifying, through genetics and other methods, the arthropods that transmit them to humans. A brief synopsis of the history of these efforts as applied to mosquitoes is presented; none proved to be effective in reducing disease prevalence. Only in the last few years have novel approaches been developed or proposed that indicate the long wait may be over. Three recent developments are particularly promising: CRISPR-Cas9 driven genetic modification, shifting naturally occurring allele frequencies, and microbe-based modifications. The last is the furthest along in implementation. Dengue fever incidence has been reduced between 40% and 96% in 4 different regions of the world where Wolbachia-infected Aedes aegypti have been established in the field. It is not yet clear how sustainable such control programs will prove to be, but there is good reason for optimism. In light of this, the time is ripe for reinvigorated research on vectors, especially genetics. Vector-borne diseases primarily affect under-developed countries and thus have not received the attention they deserve from wealthier countries with well-developed and funded biomedical research establishments.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Aedes/genética , Animais , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , Mosquitos Vetores/genética , Wolbachia/genética
6.
Ecol Evol ; 12(5): e8896, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35592063

RESUMO

The Aedes aegypti mosquito first invaded the Americas about 500 years ago and today is a widely distributed invasive species and the primary vector for viruses causing dengue, chikungunya, Zika, and yellow fever. Here, we test the hypothesis that the North American colonization by Ae. aegypti occurred via a series of founder events. We present findings on genetic diversity, structure, and demographic history using data from 70 Ae. aegypti populations in North America that were genotyped at 12 microsatellite loci and/or ~20,000 single nucleotide polymorphisms, the largest genetic study of the region to date. We find evidence consistent with colonization driven by serial founder effect (SFE), with Florida as the putative source for a series of westward invasions. This scenario was supported by (1) a decrease in the genetic diversity of Ae. aegypti populations moving west, (2) a correlation between pairwise genetic and geographic distances, and (3) demographic analysis based on allele frequencies. A few Ae. aegypti populations on the west coast do not follow the general trend, likely due to a recent and distinct invasion history. We argue that SFE provides a helpful albeit simplified model for the movement of Ae. aegypti across North America, with outlier populations warranting further investigation.

7.
Front Genet ; 13: 867231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480313

RESUMO

Genome-wide association studies (GWAS) use genetic polymorphism across the genomes of individuals with distinct characteristics to identify genotype-phenotype associations. In mosquitoes, complex traits such as vector competence and insecticide resistance could benefit from GWAS. We used the Aedes aegypti 50k SNP chip to genotype populations with different levels of pyrethroid resistance from Northern Brazil. Pyrethroids are widely used worldwide to control mosquitoes and agricultural pests, and their intensive use led to the selection of resistance phenotypes in many insects including mosquitoes. For Ae. aegypti, resistance phenotypes are mainly associated with several mutations in the voltage-gated sodium channel, known as knockdown resistance (kdr). We phenotyped those populations with the WHO insecticide bioassay using deltamethrin impregnated papers, genotyped the kdr alleles using qPCR, and determined allele frequencies across the genome using the SNP chip. We identified single-nucleotide polymorphisms (SNPs) directly associated with resistance and one epistatic SNP pair. We also observed that the novel SNPs correlated with the known kdr genotypes, although on different chromosomes or not in close physical proximity to the voltage gated sodium channel gene. In addition, pairwise comparison of resistance and susceptible mosquitoes from each population revealed differentiated genomic regions not associated with pyrethroid resistance. These new bi-allelic markers can be used to genotype other populations along with kdr alleles to understand their worldwide distribution. The functional roles of the genes near the newly discovered SNPs require new studies to determine if they act synergistically with kdr alleles or reduce the fitness cost of maintaining resistant alleles.

8.
Front Genet ; 13: 825652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251133

RESUMO

Increases in arbovirus outbreaks in Sudan are vectored by Aedes aegypti, raising the medical importance of this mosquito. We genotyped 12 microsatellite loci in four populations of Ae. aegypti from Sudan, two from the East and two from the West, and analyzed them together with a previously published database of 31 worldwide populations to infer population structure and investigate the demographic history of this species in Sudan. Our results revealed the presence of two genetically distinct subspecies of Ae. aegypti in Sudan. These are Ae. aegypti aegypti in Eastern Sudan and Ae. aegypti formosus in Western Sudan. Clustering analysis showed that mosquitoes from East Sudan are genetically homogeneous, while we found population substructure in West Sudan. In the global context our results indicate that Eastern Sudan populations are genetically closer to Asian and American populations, while Western Sudan populations are related to East and West African populations. Approximate Bayesian Computation Analysis supports a scenario in which Ae. aegypti entered Sudan in at least two independent occasions nearly 70-80 years ago. This study provides a baseline database that can be used to determine the likely origin of new introductions for this invasive species into Sudan. The presence of the two subspecies in the country should be consider when designing interventions, since they display different behaviors regarding epidemiologically relevant parameters, such as blood feeding preferences and ability to transmit disease.

9.
Ecol Evol ; 11(22): 16327-16343, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824830

RESUMO

Adaptations to anthropogenic domestic habitats contribute to the success of the mosquito Aedes aegypti as a major global vector of several arboviral diseases. The species inhabited African forests before expanding into domestic habitats and spreading to other continents. Despite a well-studied evolutionary history, how this species initially moved into human settlements in Africa remains unclear. During this initial habitat transition, African Ae. aegypti switched their larval sites from natural water containers like tree holes to artificial containers like clay pots. Little is known about how these natural versus artificial containers differ in their characteristics. Filling this knowledge gap could provide valuable information for studying the evolution of Ae. aegypti associated with larval habitat changes. As an initial effort, in this study, we characterized the microenvironments of Ae. aegypti larval sites in forest and domestic habitats in two African localities: La Lopé, Gabon, and Rabai, Kenya. Specifically, we measured the physical characteristics, microbial density, bacterial composition, and volatile chemical profiles of multiple larval sites. In both localities, comparisons between natural containers in the forests and artificial containers in the villages revealed significantly different microenvironments. We next examined whether the between-habitat differences in larval site microenvironments lead to differences in oviposition, a key behavior affecting larval distribution. Forest Ae. aegypti readily accepted the artificial containers we placed in the forests. Laboratory choice experiments also did not find distinct oviposition preferences between forest and village Ae. aegypti colonies. These results suggested that African Ae. aegypti are likely generalists in their larval site choices. This flexibility to accept various containers with a wide range of physical, microbial, and chemical conditions might allow Ae. aegypti to use human-stored water as fallback larval sites during dry seasons, which is hypothesized to have initiated the domestic evolution of Ae. aegypti.

10.
Am J Trop Med Hyg ; 104(5): 1895-1906, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782213

RESUMO

Releasing mosquito refractory to pathogens has been proposed as a means of controlling mosquito-borne diseases. A recent modeling study demonstrated that instead of the conventional male-only releases, adding blood-fed females to the release population could significantly increase the program's efficiency, hastening the decrease in disease transmission competence of the target mosquito population and reducing the duration and costs of the release program. However, releasing female mosquitoes presents a short-term risk of increased disease transmission. To quantify this risk, we constructed a Ross-MacDonald model and an individual-based stochastic model to estimate the increase in disease transmission contributed by the released blood-fed females, using the mosquito Aedes aegypti and the dengue virus as a model system. Under baseline parameter values informed by empirical data, our stochastic models predicted a 1.1-5.5% increase in dengue transmission during the initial release, depending on the resistance level of released mosquitoes and release size. The basic reproductive number (R0) increased by 0.45-3.62%. The stochastic simulations were then extended to 10 releases to evaluate the long-term effect. The overall reduction of disease transmission was much greater than the number of potential infections directly contributed by the released females. Releasing blood-fed females with males could also outperform conventional male-only releases when the release strain is sufficiently resistant, and the release size is relatively small. Overall, these results suggested that the long-term benefit of releasing blood-fed females often outweighs the short-term risk.


Assuntos
Aedes/virologia , Controle de Doenças Transmissíveis/organização & administração , Vírus da Dengue/patogenicidade , Modelos Estatísticos , Mosquitos Vetores/virologia , Animais , Simulação por Computador , Dengue , Vírus da Dengue/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Controle de Mosquitos , Dinâmica Populacional/tendências , Medição de Risco , Processos Estocásticos
11.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619083

RESUMO

Mapping landscape connectivity is important for controlling invasive species and disease vectors. Current landscape genetics methods are often constrained by the subjectivity of creating resistance surfaces and the difficulty of working with interacting and correlated environmental variables. To overcome these constraints, we combine the advantages of a machine-learning framework and an iterative optimization process to develop a method for integrating genetic and environmental (e.g., climate, land cover, human infrastructure) data. We validate and demonstrate this method for the Aedes aegypti mosquito, an invasive species and the primary vector of dengue, yellow fever, chikungunya, and Zika. We test two contrasting metrics to approximate genetic distance and find Cavalli-Sforza-Edwards distance (CSE) performs better than linearized FST The correlation (R) between the model's predicted genetic distance and actual distance is 0.83. We produce a map of genetic connectivity for Ae. aegypti's range in North America and discuss which environmental and anthropogenic variables are most important for predicting gene flow, especially in the context of vector control.


Assuntos
Aedes/genética , Meio Ambiente , Interação Gene-Ambiente , Aprendizado de Máquina , Animais , Variação Genética , Genética Populacional , Humanos , Modelos Biológicos , Mosquitos Vetores/genética , Fluxo de Trabalho
12.
Ecol Evol ; 10(18): 9588-9599, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005332

RESUMO

The genetic diversity and structure of invasive species are affected by the time since invasion, but it is not well understood how. We compare likely the oldest populations of Aedes aegypti in continental North America with some of the newest to illuminate the range of genetic diversity and structure that can be found within the invasive range of this important disease vector. Aedes aegypti populations in Florida have probably persisted since the 1600-1700s, while populations in southern California derive from new invasions that occurred in the last 10 years. For this comparison, we genotyped 1,193 individuals from 28 sites at 12 highly variable microsatellites and a subset of these individuals at 23,961 single nucleotide polymorphisms (SNPs). This is the largest sample analyzed for genetic structure for either region, and it doubles the number of southern California populations previously analyzed. As predicted, the older populations (Florida) showed fewer indicators of recent founder effect and bottlenecks; in particular, these populations have dramatically higher genetic diversity and lower genetic structure. Geographic distance and driving distance were not good predictors of genetic distance in either region, especially southern California. Additionally, southern California had higher levels of genetic differentiation than any comparably sized documented region throughout the worldwide distribution of the species. Although population age and demographic history are likely driving these differences, differences in climate and transportation practices could also play a role.

13.
Parasit Vectors ; 13(1): 417, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32791977

RESUMO

BACKGROUND: The mosquito Aedes aegypti is a devastating disease vector transmitting several important human arboviral diseases. In its native range in Africa, the mosquito can be found in both the ancestral forest habitat and anthropogenic habitats such as villages. How do the different habitats impact the population genetic structure of the local mosquito populations? METHODS: To address this question, we simultaneously sampled Ae. aegypti from the forest and local villages in La Lopé, Gabon and Rabai, Kenya. The mosquitoes were genotyped at 12 microsatellite loci and a panel of ~25,000 single nucleotide polymorphisms (SNPs), which allowed us to estimate their genetic ancestries and the population genetic structure related to habitats and sampling sites. RESULTS: In the context of the global population genetic structure of Ae. aegypti, clustering analysis showed that mosquitoes from the same locality (La Lopé or Rabai) have similar genetic ancestry, regardless of their habitats. Further analysis at the local scale also found no strong genetic differentiation between the forest and village mosquitoes in both La Lopé and Rabai. Interestingly, these results from our 2017 samples from Rabai, Kenya contrast to the documentation of genetic differentiation between village and forest mosquito collections from 1975-1976 and 2009. Between-habitat measures of genetic difference (Fst) vary across the genome, with a peak of high divergence observed at the third chromosome only in the La Lopé populations. CONCLUSION: Collectively, these results demonstrated that there is little genetic isolation between forest and village habitats, which suggests possible extensive gene flow between them. From an epidemiological perspective, the forest habitat could act as a refuge for mosquitoes against vector control programmes in the domestic settings. Moreover, sylvatic populations could play a role in zoonotic pathogen transferred to humans. Therefore, future studies on disease transmission and vector control planning in the study area should take natural populations into consideration.


Assuntos
Aedes/genética , Genética Populacional , Mosquitos Vetores/genética , Animais , Infecções por Arbovirus/transmissão , Reservatórios de Doenças , Vetores de Doenças , Ecossistema , Florestas , Gabão/epidemiologia , Fluxo Gênico , Variação Genética , Técnicas de Genotipagem , Humanos , Quênia/epidemiologia , Repetições de Microssatélites/genética , Controle de Mosquitos , População Rural , Doenças Transmitidas por Vetores/transmissão , Zoonoses
14.
Curr Biol ; 30(18): 3570-3579.e6, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32707056

RESUMO

The majority of mosquito-borne illness is spread by a few mosquito species that have evolved to specialize in biting humans, yet the precise causes of this behavioral shift are poorly understood. We address this gap in the arboviral vector Aedes aegypti. We first collect and characterize the behavior of mosquitoes from 27 sites scattered across the species' ancestral range in sub-Saharan Africa, revealing previously unrecognized variation in preference for human versus animal odor. We then use modeling to show that over 80% of this variation can be predicted by two ecological factors-dry season intensity and human population density. Finally, we integrate this information with whole-genome sequence data from 375 individual mosquitoes to identify a single underlying ancestry component linked to human preference. Genetic changes associated with human specialist ancestry were concentrated in a few chromosomal regions. Our findings suggest that human-biting in this important disease vector originally evolved as a by-product of breeding in human-stored water in areas where doing so provided the only means to survive the long, hot dry season. Our model also predicts that the rapid urbanization currently taking place in Africa will drive further mosquito evolution, causing a shift toward human-biting in many large cities by 2050.


Assuntos
Aedes/crescimento & desenvolvimento , Clima , Genoma de Inseto , Mordeduras e Picadas de Insetos/epidemiologia , Proteínas de Insetos/genética , Mosquitos Vetores/crescimento & desenvolvimento , Urbanização , Aedes/genética , África/epidemiologia , Animais , Cidades , Feminino , Genética Populacional , Humanos , Masculino , Mosquitos Vetores/genética , Densidade Demográfica
15.
Pathogens ; 9(4)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260491

RESUMO

The past few decades have seen the emergence of several worldwide arbovirus epidemics (chikungunya, Zika), the expansion or recrudescence of historical arboviruses (dengue, yellow fever), and the modification of the distribution area of major vector mosquitoes such as Aedes aegypti and Ae. albopictus, raising questions about the risk of appearance of new vectors and new epidemics. In this opinion piece, we review the factors that led to the emergence of yellow fever in the Americas, define the conditions for a mosquito to become a vector, analyse the recent example of the new status of Aedes albopictus from neglected mosquito to major vector, and propose some scenarios for the future.

17.
Mol Ecol ; 29(19): 3593-3606, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33463828

RESUMO

Aedes aegypti is among the best-studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re-evaluated the evolutionary history of Ae. aegypti and these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7-28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations of Ae. aegypti are basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4-15 MYA) from its nearest formally described relative (Ae. mascarensis), Ae. aegypti moved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspecies Ae. aegypti formosus and a human commensal, Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all other Ae. aegypti than the named species Ae. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression between Ae. mascarensis and Ae. aegypti on Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domestic Ae. aegypti aegypti from Asia.


Assuntos
Aedes , Febre Amarela , Aedes/genética , África , Animais , Ásia , Humanos , Oceano Índico , Madagáscar , Mosquitos Vetores/genética , Reunião , Febre Amarela/genética
18.
PLoS Negl Trop Dis ; 13(12): e0007930, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815934

RESUMO

The yellow fever mosquito (Aedes aegypti), is the primary vector of dengue, Zika, and chikungunya fever, among other arboviral diseases. It is also a popular laboratory model in vector biology due to its ease of rearing and manipulation in the lab. Established laboratory strains have been used worldwide in thousands of studies for decades. Laboratory evolution of reference strains and contamination among strains are potential severe problems that could dramatically change experimental outcomes and thus is a concern in vector biology. We analyzed laboratory and field colonies of Ae. aegypti and an Ae. aegypti-derived cell line (Aag2) using 12 microsatellites and ~20,000 SNPs to determine the extent of divergence among laboratory strains and relationships to their wild relatives. We found that 1) laboratory populations are less genetically variable than their field counterparts; 2) colonies bearing the same name obtained from different laboratories may be highly divergent; 3) present genetic composition of the LVP strain used as the genome reference is incompatible with its presumed origin; 4) we document changes in two wild caught colonies over ~16 generations of colonization; and 5) the Aag2 Ae. aegypti cell line has experienced minimal genetic changes within and across laboratories. These results illustrate the degree of variability within and among strains of Ae. aegypti, with implications for cross-study comparisons, and highlight the need of a common mosquito repository and the implementation of strain validation tools.


Assuntos
Aedes/classificação , Aedes/genética , Animais de Laboratório/classificação , Animais de Laboratório/genética , Variação Genética , Animais , Feminino , Masculino , Repetições de Microssatélites , Mosquitos Vetores/classificação , Mosquitos Vetores/genética
19.
Sci Rep ; 9(1): 13047, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506595

RESUMO

In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd. If lethality is complete, releasing this strain should only reduce population size and not affect the genetics of the target populations. Approximately 450 thousand males of this strain were released each week for 27 months in Jacobina, Bahia, Brazil. We genotyped the release strain and the target Jacobina population before releases began for >21,000 single nucleotide polymorphisms (SNPs). Genetic sampling from the target population six, 12, and 27-30 months after releases commenced provides clear evidence that portions of the transgenic strain genome have been incorporated into the target population. Evidently, rare viable hybrid offspring between the release strain and the Jacobina population are sufficiently robust to be able to reproduce in nature. The release strain was developed using a strain originally from Cuba, then outcrossed to a Mexican population. Thus, Jacobina Ae. aegypti are now a mix of three populations. It is unclear how this may affect disease transmission or affect other efforts to control these dangerous vectors. These results highlight the importance of having in place a genetic monitoring program during such releases to detect un-anticipated outcomes.


Assuntos
Aedes/genética , Animais Geneticamente Modificados , Mosquitos Vetores/genética , Animais , Brasil/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Dengue/virologia , Genótipo , Controle de Mosquitos/métodos , Polimorfismo de Nucleotídeo Único , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
20.
Evol Appl ; 12(8): 1552-1568, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31462914

RESUMO

Many of the world's most prevalent diseases are transmitted by animal vectors such as dengue transmitted by mosquitoes. To reduce these vector-borne diseases, a promising approach is "genetic shifting": selective breeding of the vectors to be more resistant to pathogens and releasing them to the target populations to reduce their ability to transmit pathogens, that is, lower their vector competence. The efficacy of genetic shifting will depend on possible counterforces such as natural selection against low vector competence. To quantitatively evaluate the potential efficacy of genetic shifting, we developed a series of coupled genetic-demographic models that simulate the changes of vector competence during releases of individuals with low vector competence. We modeled vector competence using different genetic architectures, as a multilocus, one-locus, or two-locus trait. Using empirically determined estimates of model parameters, the model predicted a reduction of mean vector competence of at least three standard deviations after 20 releases, one release per generation, and 10% of the size of the target population released each time. Sensitivity analysis suggested that release efficacy depends mostly on the vector competence of the released population, release size, release frequency, and the survivorship of the released individuals, with duration of the release program less important. Natural processes such as density-dependent survival and immigration from external populations also strongly influence release efficacy. Among different sex-dependent release strategies, releasing blood-fed females together with males resulted in the highest release efficacy, as these females mate in captivity and reproduce when released, thus contributing a greater proportion of low-vector-competence offspring. Conclusions were generally consistent across three models assuming different genetic architectures of vector competence, suggesting that genetic shifting could generally apply to various vector systems and does not require detailed knowledge of the number of loci contributing to vector competence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...